blob: 63db30d98c8dcc1c4974496844034e396b34bcac (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
#include <complex.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include "plotting.h"
/*
* Computes the number of iterations it takes for a point z0 to diverge
* if the return value is equal to max_iterations, the point lies within the mandelbrot set
* This is an implementation the esacpe algorithm
*/
size_t mandelbrot(double complex z0, size_t max_iterations) {
double complex z = 0.0 + 0.0*I;
size_t iteration = 0;
while (cabs(z) <= 2 && iteration < max_iterations) {
z = z * z + z0;
iteration++;
}
return iteration;
}
/*
* Computes the number of iterations it takes for a point z0 to diverge
* if the return value is equal to max_iterations, the point lies within the multibrot set
* This is implementation closely matches mandelbrot
* Note, only positive integer powers are supported
*/
size_t multibrot(double complex z0, size_t max_iterations, uintmax_t d){
double complex z = 0.0 + 0.0*I;
double complex ztemp;
size_t iteration = 0;
while(cabs(z) <= 2 && iteration < max_iterations){
ztemp = z;
for(size_t i = 0; i < d; i ++){
ztemp *= ztemp;
}
z = ztemp + z0;
iteration++;
}
return iteration;
}
int main(const int argc, const char *argv[]) {
double complex z = 1.0 + 0.0*I;
size_t result = mandelbrot(z, 1000);
printf("Input: %f+%fI\n", creal(z), cimag(z));
printf("result: %zu\n", result);
}
|