aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/src/grids.c
blob: a6d35df5f64e7d9f165bd54dcfaacdffd279dfbf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "grids.h"

/*
 * Creates a grid for storing the results of the escape algorithm
 */
grid_t* create_grid(const size_t x, const size_t y, double complex lower_left, double complex upper_right){
    if(x <= 0 || y <= 0) return NULL;

    const size_t size = x * y;
    size_t* data = malloc(size * sizeof(size_t));
    if(!data){
        fprintf(stderr, "Error allocating %zu grid points for grid\n", size);
        return NULL;
    }

    grid_t* grid = malloc(sizeof(grid_t));
    if(!grid){
        fprintf(stderr, "Error allocating grid\n");
        free(data);
        return NULL;
    }

    *grid = (grid_t){
        .x = x,
        .y = y,
        .lower_left = lower_left,
        .upper_right = upper_right,
        .data = data

    };

    return grid;
}

/*
 * Sets all entries of a grid to the value val
 */
void set_grid(grid_t* grid, const size_t val){
    if(!grid || !grid->data) return;
    memset(grid->data, val, grid->size);
}

/*
 * Creates a copy of a grid
 */
grid_t* copy_grid(const grid_t* grid){
    if(!grid || !grid->data) return NULL;

    grid_t* grid_copy = create_grid(grid->x, grid->y, grid->lower_left, grid->upper_right);
    if(!grid_copy) return NULL;

    memcpy(grid_copy->data, grid->data, grid->size);

    return grid_copy;
}

/*
 * Frees a grid and its members
 */
void free_grid(grid_t* grid){
    if(!grid) return;

    free(grid->data);
    free(grid);
}

/*
 * Checks if two grids are exactly equal
 * This may return incorrect values due to floating point arrithmetic errors 
 * that occur while the grid is being filled
 */
bool grid_equal(const grid_t* grid1, const grid_t* grid2){
    return grid1->x == grid2->x && grid1->y == grid2->y &&
        grid1->lower_left == grid2->lower_left && grid1->upper_right == grid2->upper_right &&
        memcmp(grid1->data, grid2->data, grid1->size) == 0;
}

/*
 * Checks if two grids have a given maximum difference
 */
bool grid_allclose(const grid_t *grid1, const grid_t *grid2, const size_t max_error){
    if(grid1->x != grid2->x || grid1->y != grid2->y ||
            grid1->lower_left != grid2->lower_left || grid1->upper_right != grid2->upper_right){
        return false;
    }
    const size_t size = grid1->size;
    for(size_t i = 0; i < size; i++){
        //FIXME: figure out how to handle difference between two unsigned values
        //       possibly cast them to sized longs?
        if(abs(grid1->data[i] - grid2->data[i]) >= max_error) return false;
    }
    return true;
}


/*
 * Converts a grid point into the corresponding complex number
 */
double complex grid_to_complex(const grid_t* grid, const size_t index) {
    const size_t x_res = grid->x;
    const size_t y_res = grid->y;
    const double x_min = creal(grid->lower_left);
    const double x_max = creal(grid->upper_right);
    const double y_min = cimag(grid->lower_left);
    const double y_max = cimag(grid->upper_right);

    const double x_step = (x_max - x_min) / (double)x_res;
    const double y_step = (y_max - y_min) / (double)y_res;

    const size_t x_index = index % x_res;
    const size_t y_index = index / y_res;

    const double x = x_min + x_index * x_step;
    const double y = y_min + y_index * y_step;

    return x + y * I;
}

/*
 * Writes a grid to a file in the .grid format
 *
 * Returns 0 on success
 *
 * The .grid format is a binary file format
 * The first 3 bytes of the file are a magic number defined in grids.h
 * The next 16 bytes are the grid dimensions (x then y)
 * Following are 32 bytes are the bounding of the complex region (lower_left then upper_right)
 * The rest of the file is the data for the grid, which should be exactly x*y*8 bytes
 */
int write_grid(FILE* restrict file, const grid_t *grid){
    if(grid->size == 0 || !grid->data ){
        return GRID_NO_DATA;
    }

    unsigned char magic_num[3];
    for(size_t i = 0; i < 3; i++){
        magic_num[i] = (GRID_MAGIC_NUMBER >> (2*i)) & 0xFF;
    }

    if(fwrite(magic_num, 1, 3, file) != 3) return GRID_WRITE_ERROR;

    if(fwrite(&grid->x, sizeof(size_t), 1, file) != 1 ||
       fwrite(&grid->y, sizeof(size_t), 1, file) != 1 ||
       fwrite(&grid->lower_left, sizeof(double complex), 1, file) != 1 ||
       fwrite(&grid->upper_right, sizeof(double complex), 1, file) != 1){
        return GRID_WRITE_ERROR;
    }

    if(fwrite(grid->data, sizeof(size_t), grid->size, file) != grid->size){
        return GRID_WRITE_ERROR;
    }

    return 0;
}

/*
 * Creates a grid from a .grid file, reading the amount of data as specified by the file
 * For more details on the .grid format see write_grid
 *
 * Ignores remainder of file if it has finished reading but is not at the end ofthe file
 */
grid_t* read_grid(FILE* restrict file){
    // Make sure the file has a magic goose (GRID_MAGIC_NUMBER)
    unsigned char magic_num[3];
    size_t read_count = fread(magic_num, 1, 3, file);

    if(read_count != 3){
        perror("Error reading file\n");
        return NULL;
    }
    for(size_t i = 0; i < 3; i++){
        unsigned char magic_byte = (GRID_MAGIC_NUMBER >> (2*i)) & 0xFF;
        if(magic_byte != magic_num[i]){
            fprintf(stderr, "Error reading file, can't find magic %d\n", GRID_MAGIC_NUMBER);
            return NULL;
        }
    }

    size_t x = 0;
    size_t y = 0;
    read_count = fread(&x, sizeof(size_t), 1, file);
    if(read_count != 1){
        perror("Error reading file\n");
        return NULL;
    }
    read_count = fread(&y, sizeof(size_t), 1, file);
    if(read_count != 1){
        perror("Error reading file\n");
        return NULL;
    }

    double complex lower_left = 0;
    double complex upper_right = 0; 
    read_count = fread(&lower_left, sizeof(double complex), 1, file);
    if(read_count != 1){
        perror("Error reading file\n");
        return NULL;
    }
    read_count = fread(&upper_right, sizeof(double complex), 1, file);
    if(read_count != 1){
        perror("Error reading file\n");
        return NULL;
    }

    //TODO: look into mmaping the file to data, offseting by the bounding and resolution information
    //      this would likely require an alloc_grid function, similar to jeff's implementation in hw03
    grid_t* grid = create_grid(x, y, lower_left, upper_right);
    if(!grid){
        return NULL;
    }

    read_count = fread(grid->data, sizeof(size_t), grid->size, file);
    if(read_count != grid->size){
        fprintf(stderr, "Error reading file, expected %zu grid points but only found %zu\n", grid->size, read_count);
        free_grid(grid);
        return NULL;
    }

    if(!feof(file)){
        fprintf(stderr, "Finished reading %zu grid points but not at the end of the file\n", read_count);
    }

    return grid;
}