diff options
Diffstat (limited to 'src/serial-fractals.c')
| -rw-r--r-- | src/serial-fractals.c | 110 |
1 files changed, 97 insertions, 13 deletions
diff --git a/src/serial-fractals.c b/src/serial-fractals.c index fe420d6..4e081c3 100644 --- a/src/serial-fractals.c +++ b/src/serial-fractals.c @@ -1,16 +1,18 @@ #include "fractals.h" +#include <math.h> +#include "precision.h" #include "grids.h" /* - * Computes the number of iterations it takes for a point z0 to diverge + * Computes the number of iterations it takes for a point z0 to become unbounded * if the return value is equal to max_iterations, the point lies within the mandelbrot set * This is an implementation the escape algorithm */ -size_t mandelbrot(const long double complex z0, const size_t max_iterations) { - long double complex z = z0; +size_t mandelbrot(const CBASE complex z0, const size_t max_iterations) { + CBASE complex z = z0; size_t iteration = 0; - while (cabsl(z) <= 2 && iteration < max_iterations) { + while (CABS(z) <= 2 && iteration < max_iterations) { z = z * z + z0; iteration++; } @@ -30,15 +32,71 @@ void mandelbrot_grid(grid_t* grid, const size_t max_iterations){ } /* - * Computes the number of iterations it takes for a point z0 to diverge + * Computes the number of iterations it takes for a point z0 to become unbounded + * if the return value is equal to max_iterations, the point lies within the tricorn set + * This is nearly identical to mandelbrot, except for the complex conjugate + */ +size_t tricorn(const CBASE complex z0, const size_t max_iterations){ + CBASE complex z = z0; + size_t iteration = 0; + while(CABS(z) <= 2 && iteration < max_iterations){ + z = CONJ(z * z) + z0; + iteration++; + } + return iteration; +} + +/* + * Fills a grid with tricorn values + */ +void tricorn_grid(grid_t* grid, const size_t max_iterations){ + const size_t size = grid->size; + size_t* data = grid->data; + + for(size_t i = 0; i < size; i++){ + data[i] = tricorn(grid_to_complex(grid, i), max_iterations); + } +} + +/* + * Computes the number of iterations it takes for a point z0 to become unbounded + * if the return value is equal to max_iterations, the point lies within the burningship set (oh no! I hope they have fire safety gear) + */ +size_t burning_ship(const CBASE complex z0, const size_t max_iterations) { + CBASE complex z = z0; + CBASE complex z_mod; + size_t iteration = 0; + + while (CABS(z) <= 2 && iteration < max_iterations) { + z_mod = RABS(CREAL(z)) + RABS(CIMAG(z))*I; + z = z_mod * z_mod + z0; + iteration++; + } + return iteration; +} + +/* + * Fills a grid with burning_ship values + */ +void burning_ship_grid(grid_t* grid, const size_t max_iterations){ + const size_t size = grid->size; + size_t* data = grid->data; + + for(size_t i = 0; i < size; i++){ + data[i] = burning_ship(grid_to_complex(grid, i), max_iterations); + } +} + +/* + * Computes the number of iterations it takes for a point z0 to become unbounded * if the return value is equal to max_iterations, the point lies within the multibrot set * This is implementation closely matches mandelbrot, but uses cpow which might degrade performance. */ -size_t multibrot(const long double complex z0, const size_t max_iterations, const double d){ - long double complex z = z0; +size_t multibrot(const CBASE complex z0, const size_t max_iterations, const double d){ + CBASE complex z = z0; size_t iteration = 0; - while(cabsl(z) <= 2 && iteration < max_iterations){ - z = cpowl(z, d) + z0; + while(CABS(z) <= 2 && iteration < max_iterations){ + z = CPOW(z, d) + z0; iteration++; } return iteration; @@ -57,23 +115,49 @@ void multibrot_grid(grid_t* grid, const size_t max_iterations, const double d){ } /* + * Computes the number ofiterations it takes for a point z0 to become unbounded + * if the return value is equal to max_iterations, the point lies within the multicorn set + * This function is to tricorn as multibrot is to mandelbrot + */ +size_t multicorn(const CBASE complex z0, const size_t max_iterations, const double d){ + CBASE complex z = z0; + size_t iteration = 0; + while(CABS(z) <= 2 && iteration < max_iterations){ + z = CONJ(CPOW(z, d)) + z0; + iteration++; + } + return iteration; +} + +/* + * Fills a grid with multicorn values + */ +void multicorn_grid(grid_t* grid, const size_t max_iterations, const double d){ + const size_t size = grid->size; + size_t* data = grid->data; + for(size_t i = 0; i < size; i ++){ + data[i] = multicorn(grid_to_complex(grid, i), max_iterations, d); + } +} + +/* * Computes ????? for a julia set * implementation of https://en.wikipedia.org/wiki/Julia_set#Pseudocode * * This behaves weirdly, needs a very small number of iterations to be visibile */ -size_t julia(const long double complex z0, const long double complex c, const size_t max_iterations, const double R){ - long double complex z = z0; +size_t julia(const CBASE complex z0, const CBASE complex c, const size_t max_iterations, const double R){ + double complex z = z0; size_t iteration = 0; - while(cabsl(z) < R && iteration < max_iterations){ + while(CABS(z) < R && iteration < max_iterations){ z = z * z + c; iteration++; } return iteration; } -void julia_grid(grid_t* grid, const size_t max_iterations, const long double complex c, const double R){ +void julia_grid(grid_t* grid, const size_t max_iterations, const CBASE complex c, const double R){ const size_t size = grid->size; size_t* data = grid->data; for(size_t i = 0; i <size; i++){ |
