#include "fractals.h" #include "grids.h" /* * Computes the number of iterations it takes for a point z0 to diverge * if the return value is equal to max_iterations, the point lies within the mandelbrot set * This is an implementation the escape algorithm */ size_t mandelbrot(const double complex z0, const size_t max_iterations) { double complex z = z0; size_t iteration = 0; while (cabs(z) <= 2 && iteration < max_iterations) { z = z * z + z0; iteration++; } return iteration; } /* * Fills a grid with mandelbrot values */ void mandelbrot_grid(grid_t* grid, const size_t max_iterations){ const size_t size = grid->size; size_t* data = grid->data; for(size_t i = 0; i < size; i++){ data[i] = mandelbrot(grid_to_complex(grid, i), max_iterations); } } /* * Computes the number of iterations it takes for a point z0 to diverge * if the return value is equal to max_iterations, the point lies within the multibrot set * This is implementation closely matches mandelbrot, but uses cpow which might degrade performance. */ size_t multibrot(const double complex z0, const size_t max_iterations, const double d){ double complex z = z0; size_t iteration = 0; while(cabs(z) <= 2 && iteration < max_iterations){ z = cpowl(z, d) + z0; iteration++; } return iteration; } /* * Fills a grid with multibrot values */ void multibrot_grid(grid_t* grid, const size_t max_iterations, const double d){ const size_t size = grid->size; size_t* data = grid->data; for(size_t i = 0; i < size; i ++){ data[i] = multibrot(grid_to_complex(grid, i), max_iterations, d); } } /* * Computes ????? for a julia set * implementation of https://en.wikipedia.org/wiki/Julia_set#Pseudocode */ size_t julia(const double R, const double complex z0, const double complex c, const size_t max_iterations){ //FIXME: I'm notsure if this is currently implemented correctly if(R*R - R >= cabs(z0)) return 0; double complex z = z0; size_t iteration = 0; while(cabs(z) < R && iteration < max_iterations){ z = z * z + c; iteration++; } return iteration; }