#include #include #include #include #include "plotting.h" /* * Computes the number of iterations it takes for a point z0 to diverge * if the return value is equal to max_iterations, the point lies within the mandelbrot set * This is an implementation the esacpe algorithm */ size_t mandelbrot(double complex z0, size_t max_iterations) { double complex z = 0.0 + 0.0*I; size_t iteration = 0; while (cabs(z) <= 2 && iteration < max_iterations) { z = z * z + z0; iteration++; } return iteration; } /* * Computes the number of iterations it takes for a point z0 to diverge * if the return value is equal to max_iterations, the point lies within the multibrot set * This is implementation closely matches mandelbrot * Note, only positive integer powers are supported */ size_t multibrot(double complex z0, size_t max_iterations, uintmax_t d){ double complex z = 0.0 + 0.0*I; double complex ztemp; size_t iteration = 0; while(cabs(z) <= 2 && iteration < max_iterations){ ztemp = z; for(size_t i = 0; i < d; i ++){ ztemp *= ztemp; } z = ztemp + z0; iteration++; } return iteration; } int main(const int argc, const char *argv[]) { double complex z = 1.0 + 0.0*I; size_t result = mandelbrot(z, 1000); printf("Input: %f+%fI\n", creal(z), cimag(z)); printf("result: %zu\n", result); }