From 734c3a6ce7440c030c6de7251d4939804989a520 Mon Sep 17 00:00:00 2001 From: JP Appel Date: Tue, 30 Apr 2024 11:32:25 -0400 Subject: removed massive html files --- presentation/presentation.html | 411 ----------------------------------------- 1 file changed, 411 deletions(-) delete mode 100644 presentation/presentation.html (limited to 'presentation/presentation.html') diff --git a/presentation/presentation.html b/presentation/presentation.html deleted file mode 100644 index 31c1443..0000000 --- a/presentation/presentation.html +++ /dev/null @@ -1,411 +0,0 @@ - - - - - - - - HPC Complex Fractal Generation - - - - - - - - - -
-
- -
-

HPC Complex Fractal Generation

-

JP Appel

-

David Marrero

-
- -
-
-

Prerequisite Knowledge

- -
-
-

Complex Numbers

-

i2 =  − 1 z = x + iy

- -
-

Addition

-

z1 + z2 = (x1+x2) + i(y1+y2)

- -

Multiplication

-

z1z2 = (x1x2y1y2) + i(x1y2+x2y1)

-
-
-
-

What is the Mandelbrot Set

-
-

zn = zn − 12 + z0

- -
-
-
-

Fractals

-
-
-
    -
  • infinite self-similar geometric shape
  • -
  • have “fractional dimension”
  • -
-
-
-Sripenski Triangle - -
-
-
-
-

The Mandelbrot set is a fractal in the complex plane

- -
-
-
-

Fractal in Nature

-
-Romanesco Cauliflower - -
- -
-
-

Escape Time Algorithm

-
-
    -
  • Inputs -
      -
    • Maximum Number of iterations
    • -
    • Upper bound
    • -
  • -
-
    -
  1. Create a grid of points to sample
  2. -
  3. For each point in the sample space -
      -
    1. Compute the next term in the sequence
    2. -
    3. if greater than the upper bound return the number -of iterations
    4. -
    5. else repeat until the maximum number of iterations -and return
    6. -
  4. -
-
- -
-
-
-

Implementation

- -
-
-

Program Structure

-

- -
-
-

Mandelbrot

-

Image

- -
-
-

Tricorn

-

Image

-
-
-

Burning Ship

-

Image

-
-
-

Multibrot

-

Image

-
-
-

Multicorn

-

GIF

-
-
-

Julia

-

Image

-
-
-
-

Analysis

- -
-
-

-

Interactive Plots

-
-
-
- - - - - - - - - - - -- cgit v1.2.3